Artificial intelligence (AI) has been around for some decades. However, the intelligence of AI has thus far remained shrouded in mystery, and AI went through several phases of hype and disappointment as a result. Distinguishing between different levels of AI provides insight into ourselves and what a future with smart humans and machines might look like.
Intelligence is generally defined as the skill to achieve complex goals in complex environments. And because there are many different types and sorts of goals and environments, there are many different types of intelligence. Human intelligence is special because it is general: man can teach itself the capabilities to solve many problems and achieve a large variety of goals. Most AI is, currently, very narrow, as it can be applied to very specific, context-dependent cases (e.g. playing a game of chess, recognizing images on social media).How does intelligence generally work? At first, memory capacity is essential for boosting intelligence. Humans use a wide variety of mediums to transfer and store information, such as books, symbols, language, or internet websites. These mediums have in common that they can load and store information for an extended period, and that the information can change when their referents change (e.g. we can change Wikipedia when someone wins an election). The remarkable thing is that his is not bound to a specific type of medium or material substrate: the medium only needs to be able to take on a specific state for an extended period, long enough to contain the data until this is needed and requested. The smallest unit that can do this is a bit (it can only take 0 or 1 as a value).Bits are, in this sense, the atoms of computing and digital communication. Other examples of information media are vibrating molecules (for spoken communication through air), RNA and pen and paper. This substrate-independency of information is why software does not need an update to make computers quicker, but its computing power and memory-processing power does. As almost everything can containinformation, it needs to be stored in a stable system: a system in which it costs energy to change its contents and outcome. Some systems are much easier to use to change or transfer information: hard drives are easy to change using magnetism, while carving messages in a tree costs more energy. Computation is then converting and transferring information via the rules of a specific function: taking up information (input) and processing (function) this into new information (output). Possible functions are specific mathematical functions, a cooking recipe to make pasta or a chess strategy you came up with to win the game. In general, we call these algorithms, and as such we can create algorithms for all kinds of activities and processes.The problem is that what seems easy for computers is still difficult for humans: high-level reasoning, such as solving very large equations. That also works the other way around, as low-level sensimotor skills, such as doing the dishes or walking, is often hard for AIs. This is known as Moravec’s paradox, and goes to the core of developing and applying AI in most social and economic contexts as going from specialized or narrow AI and limited applicability to general AI remains very difficult. Many human activities, which are also essential for most work, such as having a general discussion or walking through a building, are hard to automate. Interestingly, jobs at the lower and upper end of our traditional occupation ladder can most easily be substituted by AI. The first, such as call center work orcashiers, because their jobs entail predictable physical work that can be automated. The latter are jobs, such as data processing or certain types of advocacy, as they require overview and strategic analysis of a huge range of data, something in which AI and smart algorithms have made huge progress in recent years.Thus, for many activities and occupations it is not relevant whether AI can pass the Turing test; what matters is how applicable it is to a wider range of activities. Therefore, intelligence requires a definition less narrow than passing a Turing test, but one that takes into account the multidimensionality of activities (e.g. some activities, such as building Lego with your kids, are not defined by finding efficient solutions) and how to interpret them. As such, the scope for work that is not qualified by cost-benefit analyses or fast problem-solving is expanding, for example social work like teaching, service jobs and care, as well as craftsmanship and cooperative forms of production. As the world around us becomes ever artificially smarter, intentional and meaningful work becomes ever more important.